
www.manaraa.com

Of Concurrent Data Structures and Iterations

Yiannis Nikolakopoulos1, Anders Gidenstam2,
Marina Papatriantafilou1(B), and Philippas Tsigas1

1 Chalmers University of Technology, Gothenburg, Sweden
{ioaniko,ptrianta,tsigas}@chalmers.se

2 University of Bor̊as, Bor̊as, Sweden
anders.gidenstam@hb.se

Abstract. Bulk operations on data structures are widely used both on
user-level but also on programming language level. Iterations are a good
example of such bulk operations. In the sequential setting iterations are
easy to design on top of an algorithmic construction of a data struc-
ture and is not considered as a challenge. In a concurrent environment,
such as a multicore system, the situation is completely different and the
issue of extending concurrent data structure designs to support iteration
operations opens new research challenges in concurrent algorithmic data
structure implementations, with respect to consistency and efficiency. In
this paper we take a journey through this young and evolving research
topic. More precisely we describe recent advances in the area together
with an overview of iteration implementations that have appeared in the
research literature as well as in widely-used programming environments
and we outline a range of application targets and challenging future
directions.

Keywords: Iteration · Consistency · Lock-free · Concurrent data struc-
tures · In-memory computation · Range-queries

1 Introduction

Algorithms + Data Structures = Programs. Wirths book title [43] has become a
famous quote and almost a synonym of what the essential components of a com-
puter program are. It shows how data structures are a crucial part of designing
and implementing efficient algorithms. An ideal data structure implementation
minimizes the complexity of specific access patterns to data that an algorithm
requires and integrates it to the data structure’s Application Programming Inter-
face (API) (e.g. FIFO queues, LIFO stacks, heaps).

Concurrent Data Structures

The above requirements are even more pronounced when shifting to a concur-
rent environment, involving multiple processing entities and units of execution.
The shared memory model requires mechanisms to ensure the integrity of the
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 358–369, 2015.
DOI: 10.1007/978-3-319-24024-4 20



www.manaraa.com

Of Concurrent Data Structures and Iterations 359

data, which can be accessed and modified by several threads or processes. Fur-
thermore, the access patterns to the data may be more complex and involve
multiple actors with different synchronization needs e.g. getting access to data
under some specific synchronization related conditions. The research commu-
nity has been studying and providing algorithmic designs and implementations
of shared memory data structures, including simple designs that incorporate
coarse-grain locking, more complex fine-grain locking techniques, non-blocking
implementations and flat combining synchronization techniques [9,15,21,24,40].

The different implementations and methodologies provide a variety of per-
formance guarantees in several quantitative and qualitative metrics, such as
throughput, scalability and fairness [8] and may comply with a variety of correct-
ness, consistency and progress requirements, thus introducing interesting trade-
offs. Balancing amongst all these requirements according to the needs of the
applications that use the data structure, remains a key research and implemen-
tation issue as is also emphasized recently by Michael [32].

As with any object in a concurrent environment [17], the algorithmic design
and implementation of operations provided by shared memory data structures
introduces several challenges regarding the correctness requirements and the pro-
vided consistency of the operations. The standard definitions that have prevailed
in the literature regarding correctness conditions of non-blocking implementa-
tions are sequential consistency [28] and linearizability [25]. These consistency
specifications have been the main models used in the research literature for argu-
ing about the correctness of parallel and concurrent programs in shared memory
systems. In the data structure context there has been a plethora of concurrent
implementations using them, cf. [9,24] and references therein.

Extended API in Concurrent Data Structures

Given the increasing interest and use-cases of concurrent data structures, imple-
mentations of them appear as part of wide spread programming frameworks
[1–3] (Java, .NET, TBB), either in the language or at the library level. In
such cases the API of the data structure is usually complemented with addi-
tional methods serving other parts of the programming framework like inher-
itance reasons, compatibility or extended functionality. As an example, Java’s
ConcurrentLinkedQueue, part of the java.util.concurrent package, is an
implementation based on Michael and Scott’s lock-free queue [33]. The API in
this case, besides the initialize, enqueue and dequeue methods that a queue
usually has, is extended with a variety of operations including peek, remove,
size, contains, toArray, addAll and iterator. The question that natu-
rally arises is whether the existing consistency specifications are adequate in
describing the desired functionality of this extended API.

Specifically, an interesting subset of the above is bulk operations, i.e. “meta”
operations that consist of a number of operations on the data structure, or a
number of primitive operations on sub-components of the data structure. A typ-
ical example is iteration operations – or enumeration as commonly called, where
the goal is to gain access to all the items stored in the underlying data structure,



www.manaraa.com

360 Y. Nikolakopoulos et al.

usually in a sequential way, without exposing the internal data structure repre-
sentation. They are usually provided through the use of constructs like iterators,
enumerators or generators.

Iterations in Sequential Programming

Iterations have been widely supported in object oriented languages in a sequen-
tial context. They were used as building blocks for other language functionalities
(e.g. [4,41]), as well as for user level convenience, e.g. to create constructs that
would assign values to a for-loop. Watt [41] characterizes iterators as object-
based and control-based. The former log the state of the traversal in a separate
data structure. According to this state the next steps of the iteration are decided
and the new state is updated as they proceed. Algorithm1 shows a simple itera-
tor of single-linked list based FIFO queue. No special language support is needed
in this case, but the iterator implementation gets more difficult the more com-
plex the main data structure is. Control-based iterators rely on specific language
constructs (e.g. yield and suspend) that abstract the previous mechanism and
assign values to a loop variable, saving the iterator state until another value is
needed.

Algorithm 1. Sequential iteration of a FIFO single-linked list based queue.
currentNode ← Head.next
while currentNode.next �= NULL do

currentNode ← currentNode.next

Iterations in Concurrent Data Structures: Challenging Issues

Typically, none of the above constructs would take concurrency under consid-
eration. In fact, even the iteration semantics may change when shifting to a
concurrent execution. For example, protecting the state of an iteration might
come in contrast with the goals of a concurrent system. In data structure imple-
mentations, the goal is to allow operations from multiple units of execution to
execute concurrently, through fine-grain synchronization or lock-free/wait-free
methods [24], enabling to utilize the system parallelism with anticipated ben-
efits in throughput and latency (i.e. operations may execute on different cores
simultaneously).

Moreover, such concurrent implementations introduce non-trivial trade-offs
among the performance throughput, the consistency and ease-of-use by the pro-
grammer. Strong consistency guarantees like linearizability [25] and sequential
consistency [28] are preferred by the programmer using the data structure. On
the other hand, they usually come at a cost of larger algorithmic complexity
in the design of the data structure. Some implementations in contemporary
programming environments (cf. Sect. 4) provide weaker consistency, but with
properties that either are unclear or do not match definitions in the literature.



www.manaraa.com

Of Concurrent Data Structures and Iterations 361

The trade-offs above, along with the fact that iterations are bulk opera-
tions on the data structures, raise questions on the cost of iteration operations
under specific consistency requirements in a concurrent implementation. How
can concurrency-related behavior be characterized through consistency specifi-
cations? Do strong consistency properties have to be expensive and what are the
alternatives, if any?

A problem that relates with bulk operations and iterations, is that of acquir-
ing a snapshot of a shared memory register [5,14,16,27]. The similarity comes
in terms of applying bulk read operations on a shared register where multiple
processes write, in order to achieve a desired level of consistency for a snapshot to
be returned. Consistency specifications for snapshot objects have evolved from
context-specific atomicity and correctness criteria [5], to generally applicable
definitions such as linearizability or relaxed guarantees like time-lapse proper-
ties [13,27].

Paper Outline

In the rest of this article we describe recent advances in problems related with
iteration operations in concurrent data structures. Section 2 gives a brief descrip-
tion of the shared memory model. Section 3 describes the necessary consistency
definitions for iteration operations, as formed by the authors of this paper in
recent work [35]. Section 4 provides an overview of iteration implementations
that have appeared in the research literature as well as in widely-used program-
ming environments. Section 5 associates iteration operations with related bulk
operations in current and upcoming systems; that section also outlines possible
questions for future work.

2 System Model

We consider the asynchronous shared memory model commonly used in the
literature, where a set of processes communicates via reading and writing in
shared memory, as also used in earlier work on concurrent iterations [34,35].
The model allows to provide concurrent implementations of a container abstract
data type (ADT) that represents a collection of items, including a set of update
operations that modify the collection according to its specification.

A concurrent ADT implementation can satisfy different progress guaran-
tees. Below we describe the standard definitions in the literature [22–24]: Wait-
freedom ensures that any process can complete an operation in a finite number of
its own steps, independently of any other process. An implementation is bounded
wait-free if there exists a bound on the number of steps any process takes to com-
plete an operation. In a lock-free object implementation it is ensured that at least
one of the contending operations makes progress in a finite number of its own
steps. It is common in lock-free implementations of ADTs that an operation is
implemented through fail-retry loops: a retry needs to take place due to one
or more interfering operations among the contending ones. A weaker guarantee



www.manaraa.com

362 Y. Nikolakopoulos et al.

is obstruction freedom: progress is only ensured for any process that eventually
runs in isolation, i.e. in absence of interferences from other operations.

We define a run ρ (or history) as an execution of an arbitrary number of
operations on the ADT according to the respective protocol that implements
the ADT. For each update operation a of an ADT that exists in a run ρ, we
call its duration the time interval [sa, fa], where sa and fa are the starting and
finishing times of a. Thus, a precedence relation → is defined over the operations,
which is a strict partial order. For two operations a and b, a → b means that
fa occurs before sb. If two operations can not be compared under →, they are
concurrent and we say that they overlap. In this work, we consider only runs
of complete executions, where there are no pending operations. A sequential
history ρ, is one where no operations overlap. We denote a prefix of a sequential
history ρ ending with an operation a, as prefρ(a). We define stateρ(a) as the
postcondition of the ADT after the operation a, i.e. the items that exist in the
collection after the execution of a in ρ.

A history is linearizable [25] if it is equivalent to a sequential history that
includes the same operations and the total order of the sequential operations
respects the partial order →. The equivalent sequential history is also called a
linearization σ. Thus, a run ρ of a linearizable ADT implementation induces a
set of total orders, that extend the partial order → in a compatible way with the
sequential semantics of the ADT. For each linearization σ of ρ, the respective
total order is denoted as ⇒σ. As in the sequential case, for every operation a in
a linearizable run ρ we respectively define stateσ(a) as the postcondition of the
ADT after operation a, in a prefix of some linearization σ of ρ that ends with a.
In this notation we will drop the parameter σ when it is clear from the context.

For a given linearizable ADT implementation consider the set of all its pos-
sible states; a state S from this set is defined to be valid with respect to a lin-
earizable execution ρ, if ∃ a linearization σ of ρ such that there exists a prefσ(a)
and S = stateσ(a).

The ADT includes update operations that can add or remove items in the
collection in accordance to the specification of the ADT. We extend the ADT
and linearizable implementations of them, and add iteration operations that will
return a state of the ADT and in particular the items that are contained in it,
with the following sequential specification:

Definition 1. [35] In a sequential execution ρ, a valid iteration Itr returns the
items contained in stateρ(a), where a is the latest update operation preceding Itr,
i.e. Itr : stateρ(a),where a → Itr ∧ � update operation a′ s.t. a → a′ → Itr.

Given a run ρ, we can define the reduced run ρ̃, that does not include the
iteration operations.

3 Framework of Consistency Definitions for Concurrent
Iterations

This section presents consistency definitions for iteration operations described
in [34,35], building on the consistency-related definitions by Lamport [29] and



www.manaraa.com

Of Concurrent Data Structures and Iterations 363

Herlihy and Wing [25]. In the following it is assumed that the reduced run ρ̃
that does not include the iteration operations is linearizable and thus for each
linearization σ of ρ̃ the respective ⇒σ is defined.

Definition 2. (i) Safeness: An iteration operation Itr ∈ ρ, not overlapping
with any other operation in ρ̃, is safe if it returns a valid state S = stateσ(a)
for some linearization σ of ρ̃ and some operation a, such that: Itr � a and
� update operation a′ : a ⇒σ a′ → Itr. If Itr is overlapping with any operations
of ρ̃, it can return any arbitrary state of the object.
(ii) Regularity: An iteration operation Itr∈ρ, possibly overlapping with some
a∈ρ̃, is regular if it returns a valid state S = stateσ(a) for some linearization σ
of ρ̃ and some operation a, such that: Itr � a and � update operation a′ : a ⇒σ

a′ → Itr, i.e. S is neither “future” nor “overwritten”.
(iii) Monotonicity: For any two iteration operations Itr1, Itr2 that return valid
states stateσ(a1) and stateσ(a2) respectively for some linearization σ of ρ̃, if
Itr1 → Itr2, then a1 ⇒σ a2 or a1 = a2.1

(iv) Linearizability: Itr is linearizable if it is regular and the run ρ is equiv-
alent to some sequential history, that includes the same operations, whose total
order respects the partial order of the original run ρ.

Definition 3. Weak regularity: Let an iteration operation Itr ∈ ρ and the
reduced linearizable run ρ̃. Let a be the latest update operation finished before
sItr, and prefσ(a) the respective prefix for some linearization σ of ρ̃. A weakly
regular Itr returns a state S such that S = stateτ (b), for some operation b in
a run τ = prefσ(a) ∪ ops[sItr,fItr], that extends the prefσ(a) with ops[sItr,fItr],
i.e. an arbitrary number of operations that are overlapping with the execution
interval [sItr, fItr].

Informally, we can see that a safe iteration implementation guarantees recent
and valid returned states only in the case that it does not overlap with any mod-
ification operations. Otherwise any arbitrary state can be returned (e.g. empty).
A regular iteration improves by guaranteeing a valid and “not future” state
to be returned even in the present of concurrent modifications. However, there
is no restriction on a regular iteration implementation on whether to actually
include in the returned state the effect of one (or more) overlapping modifica-
tion operations. Thus regularity can allow relaxed enough implementations for
the following example to occur: let Itr1 an instance of a regular iteration, and
an overlapping modification operation a. It is interesting to note that another
regular Itr2, such that Itr1 → Itr2 but Itr2 still overlapping a, might return a
different state – even preceding– from the one returned by Itr1 (if for example
Itr1 includes the effect of a in its state). Monotonicity is an additional property
that can clarify such behavior and the combination with regularity can guarantee

1 Dwork et al. [13] in the context of composite registers used two notions of monotonic-
ity, for scans and for updates. Notice that a regular Itr also satisfies the monotonicity
of updates property, i.e. for two linearized updates, an Itr that “observes” the effects
of the latter update, should also “observe” the effects of the preceding update.



www.manaraa.com

364 Y. Nikolakopoulos et al.

linearizability for “single-scanner” iterations (cf. Theorem 1 [35]). Finally, itera-
tion implementations in contemporary programming environments (cf. Sect. 4),
motivate the need for a weaker definition between safeness and regularity. Weak
regularity essentially allows to include or ignore any of the overlapping modifi-
cation operations, regardless of their respective linearization order.

Correctness conditions related to the above were recently presented by
Lev-ari et al. [30], where regularity is extended for single-writer data struc-
tures under read-write concurrency. The authors show similar intuition for their
respective regularity definition, while they motivate the need for even weaker
conditions as the ones presented above [34].

4 An Overview of Iteration Algorithms
and Implementations

In the Resarch Literature of Parallel and Distributed Algorithms

Ctrie. The first design of a concurrent data structure that integrated an iter-
ation operation was presented by Prokopec et al. [39]. They present Ctrie, a
concurrent lock-free hash trie, that besides the usual lookup, insert and remove
operations, supports a snapshot operation upon which iteration and size oper-
ations are built. Ctrie is designed partially as a persistent data structure [36]
with immutable states, and the snapshot operation relies on the fact that modi-
fication operations will create a newer generation of the data structure content,
while the snapshot retains access to the previous one. Thus, the snapshot is
considered constant-time (O(1)), while the updating of the trie to the newer
generation is delegated to the update operations, increasing their constant fac-
tor. Nevertheless, to guarantee linearizability, strong synchronization primitives
are still required. The authors suggest a variation of a Double-Compare-Single-
Swap (RDCSS) software primitive [20], to make sure that no concurrent updates
will occur while the generation is changing.

Iterators on Sets. Iteration operations in ordered linked-list based implementa-
tions of sets were presented by Petrank and Timnat [37]. The authors build on
Jayanti’s single scanner snapshot algorithm on composite registers [26], which
provides only scan and update operations for the individual registers. They
extend it to accommodate multiple iterators as well as the necessary insert,
delete and contains operations that the set semantics require. Their method
includes an object that holds a list of pointers to nodes in the main data struc-
ture and a list of reports of operations that happened during the basic traversal.
The commutativity properties of the set semantics are exploited, allowing the
snapshot operation to linearize before the linearization points of insert operations
that occurred during the traversal. The iteration operation has a complexity of
O(n+r · log(r)), where r is the size of the report list and n is the size of the main
linked list traversed. However, the latter may dynamically increase by updates
interfering the iteration.



www.manaraa.com

Of Concurrent Data Structures and Iterations 365

Iterators in Parallel Collections. Prokopec et al. [38] present a different approach
on iterators in collection data structures. They do not address issues of iterations
concurrently with modification operations, but focus on the parallelization of
iteration operations instead. They develop a framework for parallel programming
patterns such as map-reduce or parallel looping for bulk operations, and abstract
it by using splitters. These are abstractions for iteration operations that can be
used from different threads to give access to disjoint parts of the data structure.

Iteration Consistency and the Queue Test-case. A set of consistency specifi-
cations for iteration operations (cf. Sect. 3) is proposed by the authors of the
present article in [34,35]. The aforementioned work further presents an explo-
ration of the algorithmic design space for iteration operations in shared lock-free
queues and provide a set of constructions of iteration operations satisfying the
consistency properties. Weakly regular iterations are presented based on simple
traversals of the queue and by exploiting the inherent structural properties of
the linked-list based queues. They are also compared with similar implemen-
tations that exist in Java’s concurrency library [2]. The authors point out and
study the trade-offs on achieving linearizable iteration implementations between
the overhead of the bulk operation and possible support (helping) by the native
operations of the data structure. Linearizable iterations can be achieved by typi-
cal read-validate techniques that may starve, providing only obstruction-freedom.
Concurrent modification operations can help the iteration operation by marking
nodes of the queue with appropriate timestamp information. Thus, linearizable
iteration algorithms that provide wait-free progress guarantees can be designed,
with the use of synchronization software primitives like multi-word compare and
swap [20]. The reason is that due to the non-commutative nature of the queue’s
native operations, inconsistencies between the time of insertion and the respec-
tive timestamp have to be eliminated.

In Contemporary Programming Environments

Programming frameworks, such as Intel’s Thread Building Blocks for C++
(TBB), Java and the .NET platform, include, in their standard libraries, collec-
tion data structures that support concurrent operations. These collections often
support iteration over their contents while other operations may concurrently
change the data structure. What kind of consistency do they offer?

Java: The standard library of the Java Platform Standard Edition 72 [2] con-
tains a number of concurrent collection or container data types that support iter-
ation over their contents concurrently with operations that modify them. The
documentation classifies the consistency of an iteration of a particular container
data type as either snapshot style, described as capturing the state of the con-
tainer at the point in time the iterator was created, or weakly consistent, for the
ConcurrentLinkedQueue described as “returning elements reflecting the state of

2 Version 1.7.0 09.



www.manaraa.com

366 Y. Nikolakopoulos et al.

the queue at some point at or since the creation of the iterator” and similarly for
other data structures. A study of the source code for the ConcurrentLinkedQueue
reveals that the description is not entirely accurate: the result may be a mixture
of the states that occur during the iteration and can include items removed early
during the interval together with items added late, i.e. not reflecting the state at
any particular point in time.

.NET: The .NET 4.5 Framework Class library [3] contains a number of
concurrent container data structures. All of them support iteration of their
contents concurrently with operations that modify them. The library documen-
tation classifies what an iteration of a particular container type provides as
either a moment-in-time snapshot or not a moment-in-time snapshot. The con-
tainer types ConcurrentBag, ConcurrentQueue and ConcurrentStack provide
moment-in-time snapshots while the ConcurrentDictionary type does not. For
the latter it is stated that the contents exposed during the iteration may contain
modifications made to the dictionary after the iteration started.

Intel Threading Building Blocks: It is a library for parallel programming in
C++ [1] that contains a number of concurrent container data structures, some
of which support iterations concurrently with other operations on the container.
The support is limited to a subset of their operations; only three, namely con-
current unordered map, concurrent unordered set and concurrent vector
support insertion concurrently with iteration, but do not promise any particular
level of consistency.

In summary, Java’s snapshot style and .NET’s moment-in-time snapshots can
be expected to be linearizable (or nearly so). The consistency of Java’s weakly
consistent iterators varies in detail for each implementation, and the unspecified
thread-safe iterators in .NET and TBB are weakly regular.

5 Possible Applications and Research Questions

Iterations form the basis of operations that meet challenges in many of the
new, demanding applications in concurrent environments. In the era of Big Data
and the Internet of Things, in-memory analytics are becoming more and more
important, and parallelism and concurrency are essential tools.

Map and filter operations can in fact be built upon iterations, as also shown
in Prokopec et al. [38]. Paradigms of such operations, running over large evolving
data sets concurrently with other operations, may be proved valuable for real-
time analytics.

In the latest version of Java, the stream API is introduced. The idea is to
allow parallel programming patterns such as map-reduce computations to run
on streams of data that may even be unbounded. As a source of a stream, either
another stream is allowed or a collection data structure, possibly concurrent.
Streams from the latter are built by using bulk operations that are a general-
ization of iterations, called spliterators. For most of the concurrent collections
they provide weak consistency guarantees (as in Definition 3), and they allow
also parallelization (similar to the concept of [38]).



www.manaraa.com

Of Concurrent Data Structures and Iterations 367

Range queries or partial iterations for in-memory processing is another exam-
ple where iterations are useful. Essentially, range queries can be viewed as par-
tial iterations inside a data structure. Traditionally in the database domain,
data structures supporting range queries [42] were introduced to handle search
queries of multiple multi-dimensional records. Examples of today’s use cases
are On-Line Analytical Processing systems [11,12]. These delineate algorithmic
and consistency challenges for concurrent data structures. Avni et al. [6] explore
designs of data structures supporting range queries, based on transactional mem-
ory support. Brown and Avni [7] present a non-blocking k-ary search tree that
supports linearizable range queries, achieving only obstruction-freedom though.
Partial iterations on concurrency- and application-aware data objects, such as
e.g. sets, flat-sets and data-streaming-oriented objects [10,18,19,31], can prove
very useful in this direction as well.

The questions in this domain are challenging, ranging from consistency defini-
tions that are useful for applications, to algorithmic implementations that enable
possibilities for the programmers to smoothly manage efficiency and consistency
trade-offs that manifest in applications. It is expected that the consistency frame-
work [35] will be useful for several types of such bulk operations in a wide range of
concurrent objects, as it incorporates definitions across several levels of strength,
that build on each-other. Besides the weakly regular constructions that already
map to some state of the art implementations, regular iteration implementations
are expected to balance consistency and performance trade-offs, and thus form
a challenging direction for future work.

Acknowledgements. The research leading to these results has been partially sup-
ported by the European Union Seventh Framework Programme (FP7/2007-2013)
through the EXCESS Project (www.excess-project.eu) under grant agreement 611183
and by the Swedish Research Council (Vetenskapsr̊adet) project “Fine-grain synchro-
nization in parallel programming”, contract nr. 2010-4801.

References

1. Intel threading building blocks documentation. http://software.intel.com/
sites/products/documentation/doclib/tbb sa/help/index.htm. Accessed on 27
November 2012

2. Java platform standard edition 7 documentation. http://docs.oracle.com/javase/
7/docs/index.html. Accessed on 06 December 2012

3. .NET framework class library documentation. http://msdn.microsoft.com/en-us/
library/gg145045.aspx. Accessed on 10 May 2013

4. Python v2.7.5 documentation. http://docs.python.org/2/library/itertools.html.
Accessed on 10 September 2013

5. Anderson, J.H.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195
(1994)

6. Avni, H., Shavit, N., Suissa, A.: Leaplist: lessons learned in designing TM-
supported range queries. In: Proceedings of the 2013 ACM Symposium on Princi-
ples of Distributed Computing, PODC 2013, pp. 299–308. ACM, New York, NY,
USA (2013)

http://www.excess-project.eu
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://docs.oracle.com/javase/7/docs/index.html
http://docs.oracle.com/javase/7/docs/index.html
http://msdn.microsoft.com/en-us/library/gg145045.aspx
http://msdn.microsoft.com/en-us/library/gg145045.aspx
http://docs.python.org/2/library/itertools.html


www.manaraa.com

368 Y. Nikolakopoulos et al.

7. Brown, T., Avni, H.: Range queries in non-blocking k -ary search trees. In: Baldoni,
R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 31–45.
Springer, Heidelberg (2012)

8. Cederman, D., Chatterjee, B., Nguyen, N., Nikolakopoulos, Y., Papatriantafilou,
M., Tsigas, P.: A study of the behavior of synchronization methods in commonly
used languages and systems. In: 2013 IEEE 27th International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 1309–1320, May 2013

9. Cederman, D., Gidenstam, A., Ha, P., Sundell, H., Papatriantafilou, M., Tsigas,
P.: Lock-free concurrent data structures. arXiv:1302.2757 [cs], February 2013

10. Cederman, D., Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.:
Brief announcement: concurrent data structures for efficient streaming aggregation.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2014, pp. 76–78 (2014)

11. Dehne, F., Kong, Q., Rau-Chaplin, A., Zaboli, H., Zhou, R.: A distributed tree data
structure for real-time OLAP on cloud architectures. In: 2013 IEEE International
Conference on Big Data, pp. 499–505, October 2013

12. Dehne, F., Zaboli, H.: Parallel real-time OLAP on multi-core processors. In: Pro-
ceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), pp. 588–594 (2012)

13. Dwork, C., Herlihy, M., Plotkin, S., Waarts, O.: Time-lapse snapshots. SIAM J.
Comput. 28(5), 1848–1874 (1999)

14. Fatourou, P., Fich, F.E., Ruppert, E.: Time-space tradeoffs for implementations
of snapshots. In: Proceedings of the Thirty-eighth Annual ACM Symposium on
Theory of Computing, STOC 2006, pp. 169–178, ACM, New York, NY, USA (2006)

15. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization tech-
nique. SIGPLAN Not. 47(8), 257–266 (2012)

16. Fich, F.E.: How hard is it to take a snapshot? In: Vojtáš, P., Bieliková, M.,
Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 28–37.
Springer, Heidelberg (2005)

17. Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Scalable group
communication supporting configurable levels of consistency. Concurrency Com-
put: Pract. Experience 25(5), 649–671 (2013)

18. Gidenstam, A., Papatriantafilou, M., Tsigas, P.: NBmalloc: allocating memory in
a lock-free manner. Algorithmica 58(2), 304–338 (2010)

19. Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.: ScaleJoin: a
deterministic, disjoint-parallel and skew-resilient stream join enabled by concurrent
data structures. Technical Report, Chalmers University of Technology (2014)

20. Harris, T.L., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap
operation. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 265–279. Springer,
Heidelberg (2002)

21. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of the Twenty-second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2010, pp.
355–364. ACM, New York, NY, USA (2010)

22. Herlihy, M.: Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13(1), 124–
149 (1991)

23. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-
ended queues as an example. In: ICDCS 2003, IEEE Computer Society (2003)

24. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan
Kaufmann, Burlington (2008)

http://arxiv.org/abs/1302.2757


www.manaraa.com

Of Concurrent Data Structures and Iterations 369

25. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12(3), 463–492 (1990)

26. Jayanti, P.: An optimal multi-writer snapshot algorithm. In: Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC 2005,
pp. 723–732. ACM, New York, NY, USA (2005)

27. Kirousis, L., Spirakis, P., Tsigas, P.: Reading many variables in one atomic oper-
ation: solutions with linear or sublinear complexity. IEEE Trans. Parallel Distrib.
Syst. 5(7), 688–696 (1994)

28. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers C–28(9), 690–691 (1979)

29. Lamport, L.: On interprocess communication. Distrib. Comput. 1(2), 86–101
(1986)

30. Lev-Ari, K., Chockler, G., Keidar, I.: On correctness of data structures under reads-
write concurrency. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 273–287.
Springer, Heidelberg (2014)

31. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA 2002, ACM (2002)

32. Michael, M.M.: The balancing act of choosing nonblocking features. Commun.
ACM 56(9), 46–53 (2013)

33. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 1996, pp. 267–275. ACM,
New York, NY, USA (1996)

34. Nikolakopoulos, Y., Gidenstam, A., Papatriantafilou, M., Tsigas, P.: Enhancing
concurrent data structures with concurrent iteration operations: consistency and
algorithms. Technical report, Chalmers University of Technology (2013)

35. Nikolakopoulos, Y., Gidenstam, A., Papatriantafilou, M., Tsigas, P.: A consis-
tency framework for iteration operations in concurrent data structures. In: 2015
IEEE 29th International Symposium on Parallel & Distributed Processing (IPDPS)
(2015)

36. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press,
New York (1999)

37. Petrank, E., Timnat, S.: Lock-free data-structure iterators. In: Afek, Y. (ed.) DISC
2013. LNCS, vol. 8205, pp. 224–238. Springer, Heidelberg (2013)

38. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A generic parallel collection
framework. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II.
LNCS, vol. 6853, pp. 136–147. Springer, Heidelberg (2011)

39. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent tries with
efficient non-blocking snapshots. In: PPoPP 2012, pp. 151–160. ACM (2012)

40. Sundell, H., Tsigas, P.: NOBLE: a non-blocking inter-process communication
library. In: Proceedings of the 6th Workshop on Languages, Compilers and Run-
time Systems for Scalable Computers, Lecture Notes in Computer Science. Springer
Verlag (2002)

41. Watt, S.M.: A technique for generic iteration and its optimization. In: Proceedings
of the 2006 ACM SIGPLAN Workshop on Generic programming, WGP 2006, pp.
76–86. ACM (2006)

42. Willard, D.E.: New data structures for orthogonal range queries. SIAM J. Comput.
14(1), 232–253 (1985)

43. Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall PTR, Upper
Saddle River (1978)


	Of Concurrent Data Structures and Iterations
	1 Introduction
	2 System Model
	3 Framework of Consistency Definitions for Concurrent Iterations
	4 An Overview of Iteration Algorithms and Implementations
	5 Possible Applications and Research Questions
	References




